skip to main content


Search for: All records

Creators/Authors contains: "Leicht, Robert"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In the past, the construction industry has been slow to adopt new technology. There has been a rapid expansion of technologies, often referred to as Industry 4.0, to aid in the use of automation. One challenge paralleling these new technologies is implementing how a robot interprets design information, specifically information from a Building Information Model (BIM). This paper presents a method for identifying and transforming information from BIM to support robotic material placement on the construction site. This research will include a review of what information can be directly extracted from the model and what must be supplemented to the model for the robot to perform defined tasks within a construction site. The construction sites’ dynamic nature poses multiple challenges that must be addressed for the information extracted from a model to be used by a robot in daily construction operations. This research also identifies barriers and limitations based upon current practice, such as different levels of development or model content as well as needed precision within the information provided for a mobile robot to complete a defined task. 
    more » « less
  2. Robotics and automation are still considered a novelty in the U.S. construction industry, as compared to manufacturing, despite its proven advantages for production. Due to the continuing advancement of technology needed, there are limited applications of robotics in construction to date. To better identify the potential tasks that would benefit from the use of robotics on construction sites, we consider methods for assessing the craft labor tasks that occur in construction. In this paper, we decompose construction tasks of an observed activity of installation of stone veneer system and compared two systems of categorizing the construction tasks based on value added assessment and lean (waste) assessment of tasks. The analysis compares the two categorization systems using a matrix which highlights consistency in the alignment of value adding tasks, such as final placement, as well as ineffective tasks with type two muda, but discrepancies emerge regarding the idea of contributory tasks related to logistical support of construction activities. The focus of the discussion is derived from the intersection of contributory tasks with type one muda tasks. The contributory tasks offer an opportunity to reduce the use of craft labor for wasteful tasks elimination by leveraging automation and robotics. 
    more » « less
  3. One of the many ways in which automation may help the construction industry is on-site material management. This paper presents an automated process where materials are selected for staging by detecting construction progress from site images. The materials are then delivered to their respective workface locations by a robot. The effectiveness of the material selection process is assessed using a simulated and physical construction site. We demonstrate that our process is successful under a number of different conditions and environments. Our system contributes to the feasibility of autonomously managing materials on a construction site and reveals potential avenues for future research. 
    more » « less
  4. The adoption of robotics into the construction industry has been much slower than in manufacturing and industrial sectors. Current shortfalls in skilled labor, productivity trends, and ongoing safety challenges point to the need for a drastic shift toward the adoption of robotics as a component of a shift toward industrialized construction. Despite this lag, the interest and development of robotic technology targeting construction has grown in recent years, ranging from the use of drones for tracking to use in offsite fabrication. However, the integration into fundamental site construction requires reconsideration of the information technology infrastructure needed to support detailed task execution information needs in the transition from craft labor to robotic operations. This research presents the identification and mapping of the IT System Architecture required to support BIM to Robotic Construction. Combining elements of the Building Information Modeling architecture and information exchanges with the needed construction task decomposition is required. These elements are mapped to the robotic system elements required for mobile robotic operations. In addition to defining the functions and integration required to support the BIM to Robotic Construction Workflow, shortcomings in existing infrastructure, notably regarding the ability to decompose construction fabrication and assembly means and methods are defined. 
    more » « less